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Introduction

This paper introduces and evaluates two contemporary approaches of neo-logicism.

Our aim is to highlight the differences between these two neo-logicist programmes

and clarify what each projects attempts to achieve. To this end, we first introduce

the programme of the Scottish school – as defended by Bob Hale and Crispin Wright1

which we believe to be a form of epistemic foundationalism in which logic is intended

to play a foundational rôle in resolving specific epistemic challenges, such as our

knowledge of arithmetic and analysis. We contrast this with what we call the Stan-

ford/Edmonton school whose project is put forth and defended by Bernard Linsky

and Edward N. Zalta.2 This latter approach is a form of axiomatic metaphysics,

We would like to thank Bernard Linsky and Edward Zalta for many interesting discussion and helpful
comments on earlier drafts of this paper. Earlier versions of this paper were presented at the British
Logic Colloquium meeting in Bristol, 2005, the conference of the British Society for the Philosophy
of Science in Southampton, 2006, and in the Arché philosophy of mathematics research seminar in
St Andrews; we are indebted to the audiences. We would also like to thank Patrick Greenough,
Hannes Leitgeb, Øystein Linnebo, Paul McCallion, Stewart Shapiro, and Crispin Wright for helpful
comments and criticisms, and to Lindsay Duffield for literary advice. We are grateful for the funding
of our research by the AHRC and the Leverhulme Trust.

1See (Wright, 1983), (Hale, 1987), (Hale and Wright, 2001); see also (MacBride, 2003).
2See (Linsky and Zalta, 1995), (Zalta, 2000), (Linsky, 2005), and (Linsky and Zalta, 2006).
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which, if successful, achieves a different aim. Having offered an outline of the general

outlook of these two schools we discuss what Frege took to be the purpose of his

logicism. In the light of this discussion we aim to highlight why we think that the

Scottish school is not only closer to Frege’s own project but also draw attention to

some inherent shortcomings of what can be achieved if one pursues the programme

of the Stanford/Edmonton school.

1 Neo-Logicism: Two Schools

In this section we outline two schools of thought in the philosophy of mathematics,

both of which claim logicist roots and consider themselves neo-logicist programmes.

We focus on how, in general, the two schools attempt to recover arithmetic, analysis

and set theory, or even the whole of mathematics. We first discuss the Scottish school,

which is commonly known as the Neo-Fregean programme or Abstractionism.

1.1 The Scottish School

The neo-logicism of the Scottish school is to be considered a form of epistemic foun-

dationalism. It aims to explain knowledge of arithmetic and possibly the whole of

classical mathematics by appeal to what is called the context principle, certain basic

principles – so-called abstraction principles – and standard second-order logic. It is

with this trinity that they aim to resolve Benacerraf’s well-known dilemma concerning

mathematical knowledge by offering a platonist route to mathematical knowledge.

Roughly speaking, the function of the context principle is to guarantee that math-

ematical singular terms indeed refer, and so refer to abstract objects. The theory of

abstraction principles aims firstly, to introduce mathematical singular terms and sec-

ondly, to offer a “epistemically tractable” way of how a subject can come to know

basic mathematical principles. Lastly, second-order logic is adopted in order to gen-

erate the theorems of mathematics.

In this brief exposition we focus on the second and third component – abstraction

principles and second-order logic – underlying the approach of the Scottish school.

Generally speaking, this approach is a piecemeal approach to mathematics. That is,

it is concerned with specific abstraction principles – in the case of arithmetic the so-
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called Hume’s Principle – and evaluates whether these abstraction principles qualify

as “epistemically tractable” principles that can found knowledge of arithmetic. In

order to extend mathematical knowledge to other parts of mathematics, say, analysis

or set theory, a similar investigation has to take place concerning other abstraction

principles that introduce the notion of a real number or set. Let us briefly explain

how, by using Hume’s Principle, the Neo-Fregean story is meant to go for arithmetic.

Hume’s Principle (HP) can be formulated as follows:

(HP) ∀F∀G(Nx : Fx = Nx : Gx ≡ F ≈ G)

where ‘Nx : Fx’ stands for ‘the (cardinal) number of the F s’ and ‘≈’ expresses a

one-to-one correspondence.3 Thus, the principle claims that the cardinal number

belonging to the concept F is identical to the cardinal number belonging to the

concept G if, and only if, there is a one-to-one correspondence between the objects

falling under F and those falling under G.

This abstraction principle, so the Neo-Fregean claims, can be put forth as an

implicit definition. That is, the intention is to stipulate this principle as true4 which

thereby introduces a new expression: ‘Nx : x’. Assuming for the moment that this

idea is legitimate and such stipulations are knowledge-conferring, the question arises

how we can acquire knowledge of the right-hand side. This is exactly where the third

claim gets its grip, and it is also why Neo-Fregeans consider themselves neo-logicists.

For the claim is that it is a matter of logic that there are true instances of the right-

hand side of HP. The Neo-Fregean argues that in order to see this one just has to

note that it is a logical truth that the instances of the concept being non-self-identical

can trivially be put into a one-to-one correlation with themselves. This true instance

of the right-hand side of HP, suffices – assuming that HP is true – to yield a true

identity statement about numbers on the left hand side. More formally this can be

expressed as follows:

3The claim for the existence of a one-to-one correspondence can be formulated in purely (second-
order) logical vocabulary. In full detail Hume’s Principle is the following statement:

∀F∀G[Nx : Fx = Nx : Gx ≡ ∃R(∀x[Fx ⊃ ∃y(Gy ∧Rxy ∧
∀z(Gz ∧Rxz ⊃ z = y))] ∧ ∀y[Gy ⊃ ∃x(Fx ∧Rxy ∧ ∀z(Fz ∧Rzy ⊃ z = x))])]

4The Neo-Fregean also grants that not every stipulation is successful – more on this below.
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Step 1

(Nx : x 6= x = Nx : x 6= x) ≡ (x 6= x) ≈ (x 6= x)

The right-hand side of this statement is a logical truth. Assuming the truth of HP

we can discharge the right-hand side and derive:

Step 2

(Nx : x 6= x = Nx : x 6= x)

Assuming that number-terms are singular terms we can, by adopting the context

principle, infer the claim that there is an object to which the singular term refers.

We can thus existentially quantify into this formula (reading the existential quantifier

objectually and ontologically committing):

Step 3

∃y(y = Nx : x 6= x)

In addition, having the formal result in place that the second-order version of the

Peano-Dedekind axioms for arithmetic can be deduced in second-order logic from

Hume’s Principle – a result which is called Frege’s Theorem5 – the Neo-Fregean can

justifiably claim that knowledge of logic leads, merely through the stipulation of

HP, to knowledge about numbers as objects and to knowledge of arithmetic. Since,

the proponent of the Scottish school regards knowledge of arithmetic as a priori, he

also embraces the additional claim that basic mathematical principles can be known

a priori and that reasoning within second-order logic (which is needed to establish

Frege’s Theorem) preserves the epistemic status of the a priori knowable abstraction

principle.

5This theorem was first explicitly noted by Parsons, in his (Parsons, 1965) and later independently
“rediscovered” in (Wright, 1983), pp. 158–169. More recent presentations of the proof can be found
in (Boolos, 1987) (discursive), (Boolos, 1990b) (rigourous), (Boolos, 1995), and (Boolos, 1996).
Note that even a weaker version of Hume’s Principle – Finite Hume – suffices for this derivation;
see (Heck, 1997). Second-order logic is required for this proof. A relatively moderate portion of
second-order logic suffices, however: Π1

1 comprehension is enough. (Linnebo, 2004) has shown that
Frege’s Theorem cannot be proven in predicative second-order logic. (Heck, 2006) provides a proof
that ramified second-order logic suffices. For formulations of the respective fragments of second-
order logic see (Church, 1956), §58, and (Shapiro, 1991), chapter 3. For a general overview of the
technical details of Fregean arithmetic, see (Burgess, 2005).
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According to the Scottish school, some, but not all, abstraction principles have

the status of being meaning-constitutive of the expression it is meant to introduce.

It is claimed that this rôle as a meaning-constitutive principle endows them with an

epistemic dimension: namely, in the best case, it provides part of the justification

for holding these abstraction principles as true.6 However, the Neo-Fregeans do not

regard abstraction principles per se as having this special epistemic status, and also

do not insist that they are logical principles, but merely that they are analytically

true, since they are meaning-constituting.7

In this respect they depart from Frege’s logicism. Frege, at least initially, regarded

the ill-fated Basic Law V – which would be construed as an abstraction principle in

the Neo-Fregean programme – as logical.

Nevertheless, logic does play an important epistemic rôle within the Scottish

school. Since it is knowledge of logic that is needed to justifiably discharge the

right-hand side of Hume’s Principle, the Neo-Fregean believes that logical knowledge,

plus knowledge of certain abstraction principles, suffices to account for mathematical

knowledge.

1.2 The Stanford/Edmonton School

Bernard Linsky and Edward Zalta’s approach to neo-logicism is based on so-called

Object Theory (OT), a theory that was first introduced in (Zalta, 1983). The higher-

order modal8 theory contains some interesting features. One of them is that it does

not have one, but two modes of predication. The first is the ordinary form of predi-

cation, which is referred to as exemplification. This predication is formalised as, for

example, ‘Fa’ and read ‘a exemplifies F ’. The second mode of predication is called

6The account is more complicated than this. Hale and Wright have also defended the idea
that Hume’s Principle (and presumably other abstraction principles) do not have direct ontological
commitments which makes them particularly suitable for direct stipulations; see (Hale and Wright,
2000). For criticism of their approach using meaning-constituting principles see (Ebert, 2005).

7Exactly, what makes an abstraction principle a meaning-constituting principle which can under-
write knowledge is a notoriously hard questions and finding the right criteria is an ongoing research
project.

8Linsky and Zalta typically claim that their approach to neo-logicism is non-modal, see e.g. (Lin-
sky and Zalta, 2006, p. 88). This is not entirely correct, however: the possibility operator ‘3’ occurs
in the definition of the abstractness predicate, and the necessity operator ‘2’ occurs in the definition
of identity between abstracta – see below.
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‘encoding’. To distinguish the two, the order of the predicate letter and the name is

switched around: ‘aF ’, read ‘a encodes F ’.

While any object whatsoever can exemplify properties, only abstract objects en-

code properties. Moreover, encoding a property does not entail exemplifying it:

‘xF 0 Fx’, but encoding properties entails being abstract. A predicate ‘A!’ stands

for ‘is abstract’. It is not taken as primitive, however, but defined with the help of the

primitive predicate ‘is concrete’, ‘E!’. Being an ordinary object, ‘O!’ is also defined:

A!x =df ¬3E!x

O!x =df 3E!x

Abstract objects are those, that are not possibly concrete; and ordinary objects are

those that are possibly concrete. The notion of an ordinary object allows Zalta in

other projects to propose a theory of merely possible and also of fictional objects.9

This, however, will be of no concern here.

Abstract objects enter OT via a comprehension schema for abstract objects (OC):

(OC) ∃x(A!x ∧ ∀F (xF ≡ ϕ)), where ‘x’ is not free in ϕ

This axiom schema asserts that for any formula ϕ (minding the restriction on free

variables), there exists an abstract object that encodes all and only those properties

F that satisfy ϕ; or, expressed in a more sloppy way, for any collection of properties,

there is an abstract object encoding them.

OC guarantees that any (abstract) object that is described by an expression of

the form ‘ıx(A!x ∧ ∀F (xF ≡ ϕ))’ exists (where there is no free ‘x’ in ϕ). So, there

is, for example, an abstract object that encodes the property of being Zalta (or being

9OT was originally developed as a formal theory of fictional, abstract, and intensional objects
inspired by the work of Meinong’s student Ernst Mally: see (Zalta, 1983).
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identical to Zalta):10

ıx(A!x ∧ ∀F (xF ≡ ∀y(Fy ≡ y = Zalta)))

An abstract object that encodes being either Linsky or Zalta:

ıx(A!x ∧ ∀F (xF ≡ ∀y(Fy ≡ (y = Linsky ∨ y = Zalta))))

An abstract object that encodes all the properties Zalta has:

ıx(A!x ∧ ∀F (xF ≡ F (Zalta)))

Note that Zalta himself is not identical to any of these objects (since he is concrete

and not abstract). He exemplifies, rather than encodes the respective properties.

Sherlock Holmes, on the other hand, is an abstract object, viz. the abstract object

that encodes all the properties that (the fictional character) Sherlock Holmes has

according to the stories by Arthur Conan Doyle. (The devise for fomalising this will

be introduced below in the discussion of mathematical theories.) There is also an

abstract object that encodes being a square circle:

ıx(A!x ∧ ∀F (xF ≡ ∀y(Fy ≡ (y is a circle ∧ y is square))))

Moreover, there is an abstract object that encodes being a set that contains all and

only those sets that do not contain themselves. In order to avoid inconsistency, the

second-order comprehension schema for predicates:11

∃X∀x(Xx ≡ ϕ(x)), where X is not free in ϕ

10All of the following examples are, of course, dependent on the English names and predicates
entering the formal language in some way. How this is done for mathematical terms is described
below. Moreover, identity is a defined notion in OT. So, strictly speaking, one would have to specify
that the identity relation referred to in our examples is identity between concrete, rather than
abstract, objects.

11For simplicity’s sake we only give the comprehension schema for monadic second-order variables.
The restrictions apply in the same way for the general formulation for polyadic variables. We here
use the common formulation of second-order logic introduced in (Church, 1956); the current bible of
second-order logic is (Shapiro, 1991). Linsky and Zalta use an equivalent formulation that employs
λ-conversion, which requires an analogous restriction.
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(and likewise the third- and higher-order comprehension schemata) has to be re-

stricted. It has to be demanded of the standardly unrestricted second-order compre-

hension schema that ϕ does not contain any descriptions or “encoding subformulae”.

So, the fully explicit formulation of ϕ must not contain subformulae of the form pxY q,

i.e. subformulae containing the encoding mode of predication.12

Identity between abstracta, ‘=A’, is a defined relation. Two abstract objects are

identical if, and only if, they necessarily encode the same properties:

x =A y =df A!x ∧ A!y ∧2∀F (xF ≡ yF )

With this criterion for identity at hand, we can see that the abstract object introduced

above which encodes being Zalta is distinct from the object encoding all of Zalta’s

properties: the latter encodes using a Mac while the former does not.

So much for the formal background. Linsky and Zalta now suggest that math-

ematical theories can be identified as those abstract objects, that encode all the

mathematical propositions that are true according to them.13 This needs some un-

packing. First, encoding was introduced as a mode of predication, i.e. a second-level

relation that holds between an object and a property. In order for mathematical

theories to be able to encode propositions, they are handled as zero-place properties.

Any proposition p thus gives rise to a property being such that p; using the notation

of λ-conversion, this can be expressed as: ‘[λy p]’.

Being true according to a mathematical theory t can then be characterised using

the resources of OT: it is simply defined as t encoding that particular truth:

t |= p =df t[λy p]

Note that ‘|=’ does not denote a semantic consequence relation here, but merely ab-

breviates the encoding formulae on the right-hand side of the definition. There is,

however, a rule of closure that guarantees that mathematical theories are deductively

closed. Whenever a proposition is a proof-theoretic consequence14 of some proposi-

12One might complain that object comprehension, OC, is suspect on the grounds that with the
introduction of OC the well established second-order comprehension schema, considered logical by
many, needs to be restricted to avoid inconsistency. We will not follow this criticism here.

13See (Linsky and Zalta, 1995), pp. 538–539, and (Linsky and Zalta, 2006), pp. 89–90.
14One might quibble whether this should mean a consequence according to the proof theory of
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tions that are true according to the theory – i.e. that are encoded by the theory, which

means in particular the axioms – then the theory also encodes this proposition:

Rule of Closure

If p1, ..., pn ` q and t |= p1 and ... and t |= pn, then t |= q.

The theoretical terms of a mathematical theory can also be imported into OT in the

following way: Take a term κ of the mathematical theory t in question and index it

with the name of the theory. OC will then guarantee that there is a corresponding

abstract object:

κt =df ıx(A!x ∧ ∀F (xF ≡ t |= Fκt))

Generalising OC in the obvious way to also yield objects of higher types, i.e. properties

and relations, we can import in an analogous way the properties and relations Π of

mathematical theories into OT (the bold-face letters stand for third-order predicates

and variables):

Πt =df ıR(A!R ∧ ∀F(RF ≡ t |= FΠt))

Membership in Zermelo-Fraenkel set theory (ZF), for example, can thus be defined

in OT as:

∈zf =df ıR(A!R ∧ ∀F(RF ≡ zf |= F∈zf))

With these items available, all propositions of the mathematical theory in question

can be added to OT as (arguably) analytic truths, ‘In theory t, p’, in this way:

Add to OT sentences of the form pt |= ϕ∗q, where ϕ is an axiom of the

t and ϕ∗ is arrived at by indexing all well-defined terms and predicates

of theory t as belonging to t.

The rule of closure will then take care of all the theorems of the mathematical theory

in question. To use zf as an example again, the existence of a set without members

according to zf can be expressed in OT as:

zf |= ∃x¬∃y y ∈zf x

the mathematical theory in question, or according to whatever metatheory Linsky and Zalta use
for OT. (Zalta, 2000), p. 232, suggests that it is the proof-theoretic consequence relation of OT;
it is unlikely that constructivist theories are faithfully represented in this way, not to speak of
paraconsistent mathematics (see, for instance, (Priest, 1994)).
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Linsky and Zalta take all the resulting sentences to be analytic, since all these sen-

tences say, once they are imported into OT, is that a given mathematical theory

affirms this-and-that. Moreover, since the theoretical terms of the mathematical the-

ories are imported into OT, too, and OC guarantees a corresponding object, so to

speak, OT also directly delivers the ontology to satisfy the imported sentences.15

In this way, any possible mathematical theory can be imported into OT. Linsky

and Zalta write:

[O]ur program ... takes as data any arbitrary mathematical theory that

mathematicians may formulate, and provides a more general explanation

and analysis as a whole. ((Linsky and Zalta, 2006), p. 89)

This, according to Linsky and Zalta, “constitutes a form of neologicism” since it is

a weakening of the logicist claim that mathematics is reducible to logic alone. Being

a weakening of this logicist claim is what Linsky and Zalta identify as a hallmark of

neo-logicism. They write:

Our claim is:

Third-order object theory is a neologicism because it reduces (in the sense

just described) all of mathematics to ‘third-order’ logic[16] and some an-

alytic truths. ((Linsky and Zalta, 2006), p. 91)

Let us briefly come back to the importing of mathematical theories into OT. Are

we not going in a circle here? Mathematical theories are supposed to enter OT

as those abstract objects that encode all propositions true according to them, but

importing these propositions into OT involves mentioning the mathematical theory.

The crux is that it is not the imported mathematical statements that identify the

15It cannot, however, deliver the ontology that the original theories are intended to be about.
The intended model of real analysis, for example, has an uncountable domain, but the technique
described above will only ever deliver countably many objects, since the language is countable.

16Linsky and Zalta comment on this: “By quoting the phrase ‘third-order’, we are calling attention
to the fact that the theory is weaker than full third-order logic. Though our theory is most naturally
formulated using third-order syntax its logical strength is no greater than multi-sorted first-order
logic.” (ibid.) The “analytic truth” not only include the mathematical statements that are to be
imported into OT, but also the comprehension schema for abstract objects, OC, along with the
notion of encoding. It should also be noted that modal operators figure in some of the definitions;
see footnote 8 above.
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mathematical theory in OT. The definition, rather, quantifies over propositions, and it

is outside of OT that we are to decide what propositions are true according to a given

mathematical theory. In other words, mathematicians, or mathematical practice will

tell us.

Formally, Linsky and Zalta can thus state that if t is a mathematical theory, then

it is that abstract object that encodes all its theorems:17

MathTheory(t) ⊃

t = ıx(A!x ∧ ∀F (xF ≡ ∃p(t |= p ∧ F = [λy p])))

This, however, leaves open what the antecedent actually says. The answer is to be

found in (Zalta, 2000, pp. 229–230). First, take ‘Math(p)’ as a primitive notion, with

the intended meaning ‘is a purely mathematical proposition’. Zalta asks us to rely

upon the “pretty good pretheoretic grasp” we have to decide this predicate. Then,

add another primitive predicate, namely ‘Axy’ for ‘x authored y’, or, equivalently, ‘y

is an author of x’.18 Now ‘MathTheory(x)’ can be defined:

MathTheory(x) =df

∀F (xF ⊃ ∃p(Math(p) ∧ F = [λy p])) ∧ ∃y(E!y ∧ Ayx)

Thus, mathematical theories are a particular kind of story, akin to fiction in many

ways. Mathematical theories have to be authored: there are no mathematical the-

ories (yet) that have not been written or authored in some other way (yet).19 This

17Identity between properties (for all types or orders) is defined as necessary co-encoding:

F = G =df 2∀x(xF ≡ xG)

This is another place where the modal operator comes in; see footnote 8. Similarly, identity between
propositions is defined as:

p = q =df [λy p] = [λy q]

which unpacks as:
p = q =df 2∀x(x[λy p] ≡ x[λy q])

See (Zalta, 2000), p. 224, fn. 9.
18We omit the type specification here for simplicity’s sake. For a typed version see (Zalta, 2000),

pp. 228ff.
19In (Zalta, 2000), p. 230, anticipates possible criticisms regarding this point. He suggests that

possible authorship might be sufficient. Formally, this would be to introduce a possibility operator,
‘3’, in front of the second existential quantifier.
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definition also seems to put mathematical theory ontologically on a par with pieces of

fiction: for example, Peano Arithmetic is ontological on one level with the Brothers

Grimm’s Rumpelstielzchen, metaphysically speaking. We will not further dwell on

potential problems of the resulting ontology here.20 Instead, let us briefly consider

a short story (which, as such, should be taken with a grain of salt). It is meant to

highlight the differences between the two schools and will be used to support our final

conclusions.

2 Interlude: The Travels of Hero and Hera

The twins Hero and Hera had always been inseparable. After school they both went

to Ohio State University, and together they discovered higher-order logic there. Each

excelled at their new favourite subject, passing the final exams with flying colours.

Before long, both Hero and Hera had applications for graduate programmes winging

away in the post. Hero was awarded AHRC funding to go to St Andrews, whilst Hera

gained a scholarship to study in Stanford.21 And so, the time came for the twins

to part company, as each budding young philosopher embarked on a PhD in logic

at different universities, in different countries, and under different supervisors. Of

course, being the diligent and obedient students they inevitably were, both Hero and

Hera unquestioningly accepted every principle their respective supervisors (Crispin

Wright and Edward Zalta) presented them with.

Hero’s first week at St Andrews was a good one. In addition to testing the

water (and a few other choice beverages) he learnt all about Hume’s Principle, the

abstraction principle which states that the number of the F s equals the number of

Gs if, and only if, there is a bijection between them. By his second week, Hero learnt

the abstraction principle for real numbers. And, by the third week Hero had really

begun to settle into the St Andrews lifestyle, to learn New V and Newer V, the two

consistent restrictions of the inconsistent Basic Law V.

By this point, by way of deduction in second-order logic, Hero had acquired

arithmetic from Hume’s Principle and real analysis from the abstraction principle for

20We are, however, discussing these and other further issues in our (Ebert and Rossberg, 2006, in
preparation).

21Hera briefly considered going to Edmonton instead, but the cold winters put her off.
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the reals. Admittedly he didn’t get much set theory from New V or Newer V, but

towards the end of his final year Hero was lucky enough to learn that Julius Caesar

is not a number, so all was well. He was able to deduce a set theory that interprets

(most of) ZF from a version of Hume’s Principle22, New V, and Newer V, along with

the solution to the Caesar Problem.23

Meanwhile, across the pond, life was different for Hera. In her first week she

learnt all about a new (primitive) form of predication, called ‘encoding’, and that

abstract objects encode properties much in the same way that concrete objects have

properties. In her second week, Hera learnt where these abstract objects come from,

viz. from Object Comprehension. By the third week, Hera’s supervisor had explained

to her that mathematical theories are just examples of some of those abstract objects

whose existence is given by Object Comprehension, and also that one can add any

statement of the form ‘In theory t, p’ to the system – which she learnt is (analytically)

true if p is a theorem of t. She also learnt that all the entities that these mathematical

theories talk about exist as well: they are also given by Object Comprehension.

However, all that was only the beginning for Hera. She was quickly packed off

to the mathematics department to learn all possible mathematical theories whose

existence is guaranteed by Object Comprehension, and whose analytic truths (‘In t,

p’) can be added to the system. Amidst all that, Hera was reminded that

“Indeed, a unique feature of our program is that it yields no proper mathe-

matics on its own, and so makes no judgments about which parts of mathe-

matics are philosophically justified! Instead, it takes as data any arbitrary

mathematical theory that mathematicians may formulate.” ((Linsky and

Zalta, 2006), p. 30)

As one might expect from the amount of studying involved, Hero was going to grad-

uate sooner, because Hera’s course took longer to complete – after all she did have

22Namely: Finite Hume, as introduced in (Heck, 1997).
23A careful study of (Cook, 2003) revealed to Hero that the following principles are enough to

prove all axioms of ZF except Foundation. These are, New V, Newer V, the Size-Restricted Ordinal
Abstraction Principle (SOAP) and the existence of infinitely many non-sets. From footnote 30 of
(Cook, 2003) Hero learnt that, strictly speaking, SOAP can be dispensed with if slightly reformulated
versions of New V and Newer V are adopted. Hero then realised (on his own) that the existence of
infinitely many non-sets follows from Hume’s Principle provided that the Caesar Problem is resolved
in such a way as to yield that numbers are not sets, i.e. the problems raised in (Cook and Ebert,
2005) are resolved.
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all possible mathematical theories to learn. (Hera certainly realised that she was not,

strictly speaking, required to go and learn all possible mathematical theories – this

is not part of the programme. Since she set out to acquire mathematical knowledge,

however, she decided to make full use of the possibilities of Object Theory.) All Hero

had to learn, on the other hand, was four abstraction principles (and that Julius

Caesar is not a number).

Despite the physical and philosophical separation of Hero and Hera since their

undergrad years, a remarkable coincidence conspired to unite them again in a bizarre

way as each approached the ultimate end of their studies. In their final examinations,

both Hero and Hera were confronted with the same questions:

1. Proof that 2 + 2 = 4!

2. How do you know that it is true?

Allowed materials: The principles your supervisor taught you.

Hero tackled the challenge in the following elegant way: He swiftly derived the Peano-

Dedekind axioms of arithmetic from Hume’s Principle in second-order logic, and used

them to prove that 2 + 2 = 4. For the second question, Hero simply claimed that

he was allowed to take Hume’s Principle as (analytically) true, since it is a meaning-

constituting principle, and also since pure (second-order) logic can be used to derive

the statement in question, he comes to know it simply by way of deduction from

Hume’s Principle. Although, his external examiners were not entirely convinced that

the mere meaning-constituting character of an abstraction-principle will be enough

to secure its truth and so account for his knowledge of Hume’s Principle, and also

had some misgivings about the adoption of second-order logic, they were sufficiently

impressed by his story (and the presentation thereof) to award him a PhD. Yet they

hoped he would – in the near future – say why exactly some abstraction principle

succeed in founding knowledge while others fail.

For Hera, though, the challenge was considerably more daunting. After a little

initial hesitation, she quickly proved that 2 + 2 = 4 in Peano Arithmetic, then in

Robinson Arithmetic, and then in real as well as complex analysis, followed by a proof

in the system of Principia Mathematica and then in ZF (plus suitable definitions). Her
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examiners stopped her just before she started the proof in Aczel’s anti-foundational

set theory.24

“But you didn’t tell me what ‘2’ and ‘4’ and ‘+’ and ‘=’ you were talking about,”

she protested. “So I just started with some common theories. I can also prove it

in Priest’s paraconsistent arithmetic if that’s better.”25 Looking a bit sheepish as

she said it, Hera added that she also knew a few disproofs, if the examiners would

like. The examiners assured her that they wouldn’t like that, and asked her to move

on to the second question. Alas, Hera was stumped on that one. Eventually, she

reluctantly said that she knows it is a theorem of various mathematical theories. She

knew, for example, that in PA, 2 + 2 = 4, but without clarifying which ‘2’ and ‘4’

and ‘+’ and ‘=’ is meant, she wasn’t sure what she was meant to show.26

Her examiners were intrigued about her responses and awarded her the degree for

her stimulating views in the philosophy of mathematics, her sophisticated axiomatic

metaphysics, and her heroic attempt to account for any possible mathematical theory.

3 Axiomatic Metaphysics vs Epistemic Founda-

tionalism: the Purpose of Neo-Logicism?

The idea in this section is not to pinpoint specific problematic issues that threaten

the tenability of either of the programmes. Rather, assuming that each project is

tenable and internally consistent, we aim to tackle the question what the purpose is

of pursuing either of these two projects. That is, what is the philosophical payback

from pursuing either the Scottish school, i.e. epistemic foundationalism, or the Stan-

ford/Edmonton school, i.e. axiomatic metaphysics. We hope that the story highlight-

ing the achievements of Hero and Hera will help to identify the differences between

the two approaches. By appealing to what Frege thought what the aim of logicism is,

24A consistent set theory that dispenses with the Axiom of Foundation, and allows sets to contain
themselves; see (Aczel, 1988).

25See (Priest, 1994).
26(Andersen and Zalta, 2004) present a different neo-logicist programme in the framework of

second-order modal OT which allows for the derivation of ‘2+2 = 4’ as a categorical statement, since
this approach allows the derivation of some modest parts of mathematics as non-hedged statements
from some additional assumption; see also (Zalta, 1999), and the discussion in (Linsky and Zalta,
2006), §4.2. It is argued in (Linsky and Zalta, 2006), §5, that the approach presented here is to be
preferred to the Andersen and Zalta project.
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we hope to show that the purpose of pursuing the Stanford/Edmonton school does

not fit the bill.

The original logicist programme was clearly epistemological in spirit, as Frege

writes:

“The problem becomes, in fact, that of finding the proof of the sentence,

and of following it up right back to the primitive truths. If in carrying out

this process, one comes only to general logical laws and definitions, then

the truth is an analytic one. [. . . ] [If the] proof can be derived exclusively

from general laws, which themselves neither need nor admit proof, then

the truth is a priori.” ((Frege, 1884), p. 4, our italics and translation)

and later in the Grundgesetze he writes the following:

“In virtue of the gaplessness of the chain of inferences it is achieved that

each axiom, each presupposition, hypotheses, or however else one might

want to call that which a proof rests upon, is brought to light; and thus

one gains a foundation for the assessment of the epistemological nature of

the proven law.” ((Frege, 1893), p. XXVI, our italics and translation)

These quotations provide a good indication that Frege’s logicist project was founda-

tionalist in nature. He aimed to identify a few select general logical laws, or basic

laws, that were needed to provide an epistemic foundation: namely, mathematical

knowledge was meant to “flow” from those basic principle and (what is now called)

second-order logic. In addition, Frege also thought of the basic principles as pro-

viding an ontological foundation. Basic Law V was meant to identify the logical

objects (extensions) by means of which numbers could then be defined. For Frege,

logic was the most general of all sciences and concerned with the laws of thought. He

considered it to be objectively valid independent of any thinker. Moreover, mathe-

matical statements derived from these logical principles using second-order logic were

also considered objective (and so independent of anyone “authoring” them) and the

underlying objects were considered to exist mind-independently. There could not

be two different yet equally acceptable logics, and there could not be different and

incompatible theories of numbers.

The Scottish school is squarely in line with this epistemic foundationalist approach

of Frege’s. The aim is to select a few principles (which are, however, not regarded

16



purely logical) and then to explain how Hero can, by means of grasping these principle

come to know mathematics. The resulting theory explains (assuming it works) how

mathematical knowledge can flow from basic principles and second-order knowledge.

In addition, the objects these principles are purportedly about are considered to exist,

and exist mind-independently. Mathematics and logic are considered objective and

not as a mere game or fiction: the statements Hero knows are categorical statements

involving a distinct ontology. Thus, we think, the Scottish school neatly fits the

general methodology and the aims of Frege’s logicist project and should be labelled

neo-logicist.

In contrast, the Stanford/Edmonton school is an enterprise in axiomatic meta-

physics. It aims to select a few metaphysical principles and then provides the tools

for Hera to re-interpret any mathematical theory within the new metaphysical frame-

work. Her mathematical knowledge does not flow from some basic mathematical or

logical principles. Rather she knows how any mathematical statement, or any math-

ematical theory for that matter, can be re-interpreted within object-theory.

This is a difference worth emphasising: while the Stanford/Edmonton school

wants to account for any mathematical theory, the Neo-Fregean, like Frege, believes

that there are mathematical principles, and so mathematical theories, that are better

than others.27

So, for Hera, every mathematical statements will be true provided it is bound

by the respective ‘In theory t’-operator. Her mathematical knowledge thus reduces

to knowledge of these hedged statements within the new metaphysical framework

and, hence, is not categorical.28 Also, since mathematical theories and with them

27The Neo-Fregean does not aim at an epistemic foundation of inconsistent theories, for example.
We expand on this in our (Ebert and Rossberg, 2006).

28There is a way of simulating categorical statements in OT (and there is, as mentioned in
footnote 26 above, also the approach presented in (Andersen and Zalta, 2004)). The statement
that expresses that, according to ZF, the empty set does not have any members, is represented as
a hedged OT sentence like this:

zf |= ¬∃x(x ∈zf ∅zf)

Since for this we already have to import the terminology of ZF into OT, using the technique described
in section 1.2 above, one can now also directly express a related statement: while it is not provable
in OT that the (ZF) empty set has no (ZF) member, in the sense of it exemplifying the property of
having no (ZF) members, there is a sentence that is a theorem of OT which asserts that the (ZF)
empty set encodes having no (ZF) members; formally, that looks something like this:

∅zf[λy(¬∃x(x ∈zf y))]
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mathematical objects depend (in an ontological sense) on authorship29, they cannot

be regarded to exist mind- or subject-independently either.

Hence both, the methodology involved in positing an axiomatic metaphysics and

the aims of the Stanford/Edmonton school, are very distinct from Frege’s original

logicist project. The Stanford/Edmonton programme aims to account for all possible

mathematical theories, while the attention of the Neo-Fregean is restricted to classical

number theory and set theory. Thus, once Hero has learnt the right abstraction

principles (however hard these might be to identify), all his mathematical knowledge

in these areas can be arrived at by way of inferring it from these principles using

second-order logic. While, strictly speaking, Hera did not have to go and learn all

possible mathematical theories, she nevertheless had to go and study mathematical

theories to get mathematical knowledge: no mathematical knowledge is provided

by the Stanford/Edmonton programme on its own. Although it surely has its own

intellectual merits and interest, we believe that it fails to fulfil the purpose of logicism

and so should not be regarded a form of neo-logicism.

While it might not be considered a major blow that according to these consid-

erations Linsky and Zalta’s proposal should be denied the (largely honorific) label

‘neo-logicism’, we nevertheless want to maintain that their claim that this project

“constitutes an epistemic foundation, in the sense that it shows how we can have

knowledge of mathematical claims”30 cannot be upheld; and we also have to disagree

The trouble is that as soon as the OT-defined terms, like ‘∅zf’ or ‘∈zf’, are unpacked, the hedged
statements appear again; recall, for instance, the OT definition of ZF-membership:

∈zf =df ıR(A!R ∧ ∀F(RF ≡ zf |= F∈zf))

Intuitively, while the sentences about what properties are encoded by these mathematical objects
appear to be categorical (in OT), the identification of the mathematical objects and theories goes
via the hedged sentences again, i.e. via statements about what is true according to this-or-that
mathematical theory. Thus, also these “categorical” sentences express no more than what is the
case according to a certain theory, and, hence, should not count as properly categorical in our
opinion.

29Or possible authorship. Perhaps adopting the modal strategy mentioned in footnote 19 above
addresses this concern: if a case can be made that dependence on merely possible authorship is
consistent with the relevant notion of (mind-)independent existence. How attractive this approach
is, however, requires further discussion: for example, since the Barcan Formula, ‘3∃xϕ ⊃ ∃x3ϕ’, is
a theorem of OT (see (Linsky and Zalta, 1995), p. 543, fn. 24), mathematical theories that are not
actually authored commit us to the existence of authors who are bare possibilia.

30(Linsky and Zalta, 2006), p. 61, our italics.

18



with their conclusion that their project “best addresses the underlying motives of

the early logicists.”31 The “principal driving force of the early logicists”, Linsky and

Zalta suggest (correctly, as we think), were “epistemological concerns about how we

can have knowledge of mathematics” (ibid.). We argued that the epistemic concerns

of logicism are not addressed by this programme.32
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